Is Turbulence Affecting Your Network?

Federico Cifuentes-Urtubey¹, Fabián E. Bustamante²

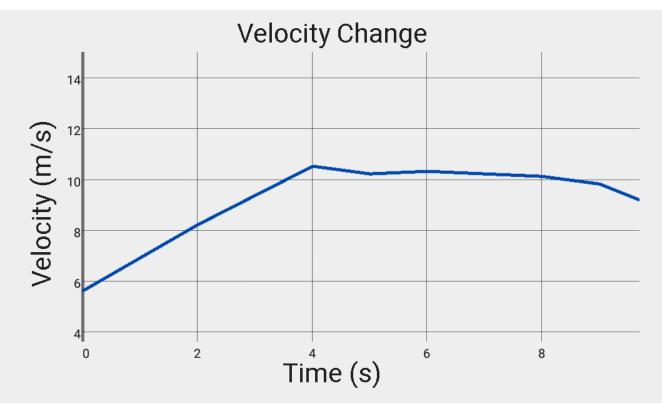
¹Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County ²Department of Electrical Engineering and Computer Science, Northwestern University

In-Flight Connectivity

In-Flight connectivity (IFC) on commercial airplanes is in growing demand as people expect pervasive, highperformance access to the Internet. The highly unique IFC environment – with planes flying at high speed, thousands of feet midair – challenges efforts to maintain a performing, reliable Internet connection.

One of the unique features of the IFC context is turbulence, which causes a plane to shake as it resists strong winds. In that context, one would expect that the sudden changes in a plane's position will affect wireless network connection. Thus, the goal of this work is to study the potential impact of turbulence on IFC performance. To this end, we have developed an application to study the correlation between user-validated turbulence events, their intensity levels, and network performance.

Methodology


- Data collection through crowdsourcing app
 - IFC performance
 - Send pings to www.google.com
 - Perform DNS queries to observe delays
 - Record traceroute hops and delays
 - Turbulence
 - Monitor device velocity changes
 - Validation from user for turbulence detection
- Turbulence and performance analysis
 - Correlation analysis of detected turbulence measurements and IFC performance
 - Long, strong turbulence should be correlated with high packet losses / lower network performance

Turbule

Rate y

nce Report	The
SHOW GRAPHS HISTORY	user velo m/s
our current velocity.	
25.05 mph 🔲 Metric	lf turb the expe
our turbulence experience	inter
O There was turbulence?	
O There were some bumps	Netv
O I had trouble staying still	fligh
O The shaking was bad	
O Terrifying	

The "Show Graphs" button leads to this view

changes.

The user can scroll left and right to view detailed changes on the line graph.

Once a flight is finished, recordings and statistics will be automatically submitted. This can be detected from when an airplane slows down to less than 20 mph.

Crowdsourced Data Collection

active screen lets the view their real-time city in either mph or measurements.

they encounter oulence, the user has ability to report their level erienced of nsity.

work statistics during a t are recorded in the kground.

As the device's accelerometer values change, the velocity graph updates in real time to track potential sudden speed

Discussion

- Confounding factors explaining packet loss
 - IFC networks are often congested
 - Other sources of interference
- Turbulence detection is challenging
 - The user may drop or shake their phone
 - Low intensity turbulence may be subtle on graphs
- Time granularity for correlation analysis must be small

Future Work

Implement aviation website background readings Aviation websites (FlightAware.com & AviationWeather.gov) can help track altitude, turbulence, and sky conditions to have consistency between aircraft reports and user reports.

History of flight data

Adding a device specific history view option can contribute to a more transparent view of experienced performance of inflight Internet connectivity.

Possible connection remediation

Using a transfer protocol that handles loss recovery more strategically than TCP may result in less frequent loss for a trade off in latency.

Acknowledgements

This material is based upon the work conducted by the AquaLab at Northwestern University with support from the Summer Research Opportunity Program hosted by The Graduate School at Northwestern University. We would also like to thank James Newman for data collection.

References

J. P. Rula, F. E. Bustamante, and D. R. Choffnes. When IPs Fly: A Case for Redefining Airline *Communication*. In Proc. of HotMobile, 2016. http://dx.doi.org/10.1145/2873587.2873605

J. P. Rula, J. Newman, F. E. Bustamante, A. M. Kakhkiz, and D. R. Choffnes. Mile High WiFi: A First Look At In-Flight Internet Connectivity. 2016.

Northwestern THE GRADUATE SCHOOL Northwestern ENGINEERING

